GEOS  3.13.0dev
d2s_intrinsics.h
1 // Copyright 2018 Ulf Adams
2 //
3 // The contents of this file may be used under the terms of the Apache License,
4 // Version 2.0.
5 //
6 // (See accompanying file LICENSE-Apache or copy at
7 // http://www.apache.org/licenses/LICENSE-2.0)
8 //
9 // Alternatively, the contents of this file may be used under the terms of
10 // the Boost Software License, Version 1.0.
11 // (See accompanying file LICENSE-Boost or copy at
12 // https://www.boost.org/LICENSE_1_0.txt)
13 //
14 // Unless required by applicable law or agreed to in writing, this software
15 // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
16 // KIND, either express or implied.
17 #ifndef RYU_D2S_INTRINSICS_H
18 #define RYU_D2S_INTRINSICS_H
19 
20 #include <assert.h>
21 #include <stdint.h>
22 
23 // Defines RYU_32_BIT_PLATFORM if applicable.
24 #include "ryu/common.h"
25 
26 // ABSL avoids uint128_t on Win32 even if __SIZEOF_INT128__ is defined.
27 // Let's do the same for now.
28 #if defined(__SIZEOF_INT128__) && !defined(_MSC_VER) && !defined(RYU_ONLY_64_BIT_OPS)
29 #define HAS_UINT128
30 #elif defined(_MSC_VER) && !defined(RYU_ONLY_64_BIT_OPS) && defined(_M_X64)
31 #define HAS_64_BIT_INTRINSICS
32 #endif
33 
34 #if defined(HAS_UINT128)
35 typedef __uint128_t uint128_t;
36 #endif
37 
38 #if defined(HAS_64_BIT_INTRINSICS)
39 
40 #include <intrin.h>
41 
42 static inline uint64_t umul128(const uint64_t a, const uint64_t b, uint64_t* const productHi) {
43  return _umul128(a, b, productHi);
44 }
45 
46 static inline uint64_t shiftright128(const uint64_t lo, const uint64_t hi, const uint32_t dist) {
47  // For the __shiftright128 intrinsic, the shift value is always
48  // modulo 64.
49  // In the current implementation of the double-precision version
50  // of Ryu, the shift value is always < 64. (In the case
51  // RYU_OPTIMIZE_SIZE == 0, the shift value is in the range [49, 58].
52  // Otherwise in the range [2, 59].)
53  // Check this here in case a future change requires larger shift
54  // values. In this case this function needs to be adjusted.
55  assert(dist < 64);
56  return __shiftright128(lo, hi, (unsigned char) dist);
57 }
58 
59 #else // defined(HAS_64_BIT_INTRINSICS)
60 
61 static inline uint64_t umul128(const uint64_t a, const uint64_t b, uint64_t* const productHi) {
62  // The casts here help MSVC to avoid calls to the __allmul library function.
63  const uint32_t aLo = (uint32_t)a;
64  const uint32_t aHi = (uint32_t)(a >> 32);
65  const uint32_t bLo = (uint32_t)b;
66  const uint32_t bHi = (uint32_t)(b >> 32);
67 
68  const uint64_t b00 = (uint64_t)aLo * bLo;
69  const uint64_t b01 = (uint64_t)aLo * bHi;
70  const uint64_t b10 = (uint64_t)aHi * bLo;
71  const uint64_t b11 = (uint64_t)aHi * bHi;
72 
73  const uint32_t b00Lo = (uint32_t)b00;
74  const uint32_t b00Hi = (uint32_t)(b00 >> 32);
75 
76  const uint64_t mid1 = b10 + b00Hi;
77  const uint32_t mid1Lo = (uint32_t)(mid1);
78  const uint32_t mid1Hi = (uint32_t)(mid1 >> 32);
79 
80  const uint64_t mid2 = b01 + mid1Lo;
81  const uint32_t mid2Lo = (uint32_t)(mid2);
82  const uint32_t mid2Hi = (uint32_t)(mid2 >> 32);
83 
84  const uint64_t pHi = b11 + mid1Hi + mid2Hi;
85  const uint64_t pLo = ((uint64_t)mid2Lo << 32) | b00Lo;
86 
87  *productHi = pHi;
88  return pLo;
89 }
90 
91 static inline uint64_t shiftright128(const uint64_t lo, const uint64_t hi, const uint32_t dist) {
92  // We don't need to handle the case dist >= 64 here (see above).
93  assert(dist < 64);
94 #if defined(RYU_OPTIMIZE_SIZE) || !defined(RYU_32_BIT_PLATFORM)
95  assert(dist > 0);
96  return (hi << (64 - dist)) | (lo >> dist);
97 #else
98  // Avoid a 64-bit shift by taking advantage of the range of shift values.
99  assert(dist >= 32);
100  return (hi << (64 - dist)) | ((uint32_t)(lo >> 32) >> (dist - 32));
101 #endif
102 }
103 
104 #endif // defined(HAS_64_BIT_INTRINSICS)
105 
106 #if defined(RYU_32_BIT_PLATFORM)
107 
108 // Returns the high 64 bits of the 128-bit product of a and b.
109 static inline uint64_t umulh(const uint64_t a, const uint64_t b) {
110  // Reuse the umul128 implementation.
111  // Optimizers will likely eliminate the instructions used to compute the
112  // low part of the product.
113  uint64_t hi;
114  umul128(a, b, &hi);
115  return hi;
116 }
117 
118 // On 32-bit platforms, compilers typically generate calls to library
119 // functions for 64-bit divisions, even if the divisor is a constant.
120 //
121 // E.g.:
122 // https://bugs.llvm.org/show_bug.cgi?id=37932
123 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=17958
124 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=37443
125 //
126 // The functions here perform division-by-constant using multiplications
127 // in the same way as 64-bit compilers would do.
128 //
129 // NB:
130 // The multipliers and shift values are the ones generated by clang x64
131 // for expressions like x/5, x/10, etc.
132 
133 static inline uint64_t div5(const uint64_t x) {
134  return umulh(x, 0xCCCCCCCCCCCCCCCDu) >> 2;
135 }
136 
137 static inline uint64_t div10(const uint64_t x) {
138  return umulh(x, 0xCCCCCCCCCCCCCCCDu) >> 3;
139 }
140 
141 static inline uint64_t div100(const uint64_t x) {
142  return umulh(x >> 2, 0x28F5C28F5C28F5C3u) >> 2;
143 }
144 
145 static inline uint64_t div1e8(const uint64_t x) {
146  return umulh(x, 0xABCC77118461CEFDu) >> 26;
147 }
148 
149 static inline uint64_t div1e9(const uint64_t x) {
150  return umulh(x >> 9, 0x44B82FA09B5A53u) >> 11;
151 }
152 
153 static inline uint32_t mod1e9(const uint64_t x) {
154  // Avoid 64-bit math as much as possible.
155  // Returning (uint32_t) (x - 1000000000 * div1e9(x)) would
156  // perform 32x64-bit multiplication and 64-bit subtraction.
157  // x and 1000000000 * div1e9(x) are guaranteed to differ by
158  // less than 10^9, so their highest 32 bits must be identical,
159  // so we can truncate both sides to uint32_t before subtracting.
160  // We can also simplify (uint32_t) (1000000000 * div1e9(x)).
161  // We can truncate before multiplying instead of after, as multiplying
162  // the highest 32 bits of div1e9(x) can't affect the lowest 32 bits.
163  return ((uint32_t) x) - 1000000000 * ((uint32_t) div1e9(x));
164 }
165 
166 #else // defined(RYU_32_BIT_PLATFORM)
167 
168 static inline uint64_t div5(const uint64_t x) {
169  return x / 5;
170 }
171 
172 static inline uint64_t div10(const uint64_t x) {
173  return x / 10;
174 }
175 
176 static inline uint64_t div100(const uint64_t x) {
177  return x / 100;
178 }
179 
180 static inline uint64_t div1e8(const uint64_t x) {
181  return x / 100000000;
182 }
183 
184 static inline uint64_t div1e9(const uint64_t x) {
185  return x / 1000000000;
186 }
187 
188 static inline uint32_t mod1e9(const uint64_t x) {
189  return (uint32_t) (x - 1000000000 * div1e9(x));
190 }
191 
192 #endif // defined(RYU_32_BIT_PLATFORM)
193 
194 static inline uint32_t pow5Factor(uint64_t value) {
195  uint32_t count = 0;
196  for (;;) {
197  assert(value != 0);
198  const uint64_t q = div5(value);
199  const uint32_t r = ((uint32_t) value) - 5 * ((uint32_t) q);
200  if (r != 0) {
201  break;
202  }
203  value = q;
204  ++count;
205  }
206  return count;
207 }
208 
209 // Returns true if value is divisible by 5^p.
210 static inline bool multipleOfPowerOf5(const uint64_t value, const uint32_t p) {
211  // I tried a case distinction on p, but there was no performance difference.
212  return pow5Factor(value) >= p;
213 }
214 
215 // Returns true if value is divisible by 2^p.
216 static inline bool multipleOfPowerOf2(const uint64_t value, const uint32_t p) {
217  assert(value != 0);
218  // return __builtin_ctzll(value) >= p;
219  return (value & ((1ull << p) - 1)) == 0;
220 }
221 
222 #endif // RYU_D2S_INTRINSICS_H